Charge - stabilized colloidal suspensions . Phase behavior and effects of confinement *

نویسنده

  • H. H. von Grünberg
چکیده

The Poisson–Boltzmann (PB) equation is used to investigate effective colloid-interface interactions and the phase behavior of charge-stabilized colloidal suspensions. When a colloidal particle, immersed in an electrolyte, approaches an interface, which may be neutral (such as air) or charged (like electrodes, glass, etc.), image charge effects plus the deformation of the colloidal ion atmosphere by the interface lead to an effective interaction which can be attractive or repulsive, depending on the surface charge density and the dielectric constants of the interface and the electrolyte. Two cases are considered: i) a spherical particle near a like-charged interface, and ii) a rod-like particle in the vicinity of an oppositely charged interface. The latter serves as a model for the adsorption of (anionic) DNA on a cationic membrane, and it is shown that the effective attraction, induced by the release of counterions on approach of the DNA to the membrane, makes up an essential contribution to the total DNAmembrane effective interaction. To understand the phase behavior of charge-stabilized colloidal suspensions, we study a PB cell model of a bulk suspension and investigate how the PB equation can best be linearized. It is found that the previously predicted gas–liquid phase coexistence results when the PB equation is linearized about the Donnan potential. No indication of such a spinodal instability could, however, be found, when the free energy is evaluated using the numerical solution of the full PB equation. This suggests that the predicted gas–liquid phase coexistence is an artifact of the linearization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak long-ranged Casimir attraction in colloidal crystals

– We investigate the influence of geometric confinement on the free energy of an idealized model for charge-stabilized colloidal suspensions. The mean-field Poisson-Boltzmann formulation for this system predicts pure repulsion among macroionic colloidal spheres. Fluctuations in the simple ions’ distribution provide a mechanism for the macroions to attract each other at large separations. Althou...

متن کامل

Confinement-induced solidification of colloid-polymer depletion mixtures.

Using a model colloid-polymer suspension, we show that confinement induces solidification in attractive colloidal suspensions via a fundamentally different route from that active in hard sphere colloidal suspensions. For a range of polymer concentrations, the suspensions undergo a phase transition from a colloidal fluid of clusters to a colloidal gel as confinement increases while polymer and p...

متن کامل

Effect of three-body interactions on the phase behavior of charge-stabilized colloidal suspensions.

We study numerically the effect of attractive triplet interactions on the phase behavior of suspensions of highly charged colloidal particles at low salinity. In our computer simulations, we employ the pair and triplet potentials that were obtained from a numerical Poisson-Boltzmann study [Phys. Rev. E 66, 011402 (2002)]]. On the basis of free energy calculations, we determine the phase diagram...

متن کامل

Effect of many-body interactions on the solid-liquid phase-behavior of charge-stabilized colloidal suspensions

The solid-liquid phase-diagram of charge-stabilized colloidal suspensions is calculated using a technique that combines a continuous Poisson-Boltzmann description for the microscopic electrolyte ions with a molecular-dynamics simulation for the macroionic colloidal spheres. While correlations between the microions are neglected in this approach, many-body interactions between the colloids are f...

متن کامل

Density dependent interactions and structure of charged colloidal dispersions in the weak screening regime.

We determine the structure of charge-stabilized colloidal suspensions at low ionic strength over an extended range of particle volume fractions using a combination of light and small angle neutron scattering experiments. The variation of the structure factor with concentration is analyzed within a one-component model of a colloidal suspension. We show that the observed structural behavior corre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002